SPLLIFT - Transparent and Efficient Reuse of

|IFDS-based Static Program Analyses

TECHNISCHE
UNIVERSITAT
DARMSTADT

I . EC SPRIDE

EUROPEAN CENTER FOR
SECURITY AND PRIVACY BY DESIGN

Eric Bodden (TU Darmstadt), Claus Braband (ITU Copenhagen), Marcio Ribeiro, Tarsis Toledo, Paulo Borba (UFPE Bra2|l) and

Mira Mezini (TU Darmstadt)

» Product lines allow highly customizable products as specializations of a

common platform; success stories exist in the car manufacturing and
mobile devices industries

» Software product lines (SPLs) use conditional compilation (e.g. via
#ifdef) to define many products as variations of a common code base

» Problem: traditional static analyses can only be applied to pre-
processed software products

» But even small product lines can induce thousands of products:
different combinations of features cause a combinatorial explosion

» Result: existing approaches do not scale; SPLs are currently
effectively unanalyzable

void main() {
int x = password();—
int y = 0; Nﬁa&h§‘“‘\\ |

traditional approach:
to decide whether the

#ifdef F

" 0: Feature F password may leak to the

pelit G print statement, one must
y = foo(x);

#endif analyze all

, print(y); 2553 =8

possible products
int foo(int p) {

#ifdef H ,

p = 0; Feature H product { "} indeed
#endif .

return p; contains a leak
}

Methodology

» Our approach SPLLFT jnstead analyzes the entire product line at once,
including all possible combinations

» This is achieved by combining flow functions for the case where an

ifdef is disabled with the one for the case where it is enabled

» The result is a lifted flow function

Enabled-case flow function ¥

d
o

0

o
|

v

o

0

V. oF

0 a
o o
rl
\ \
o o
0 a

b
°
v
°
b

Disabled-case flow function £

Lifted flow function

0 a

o o
I\\F
I

v 1y

o o

0 d

lifting of a flow function that generates the data-flow fact b after the
statement if a is valid before the statement

,,,,, ‘UP oL 810 VIV

US HARST_ECD

OPENSSL_SYS_NETWARE : 5!
fNTR ™ {T‘—{?ﬁ FLAT I 1%
REF_ PRINT

: MUEBUG

PR

meﬁammwm

OPENSSL WUV ENGNE
OFENSL_ 515 MO0S

P
\
{

|

SATY_FOUR_BiT

OPENSSL_SYS_WINIG =
MTTE_]WUE_YH(

OPENSSL_SYS_WIN3? g

labels of #ifdefs used
in OpenSSL

» Scale of the problem is immense: as an example, we investigated the
usage of #ifdef constructs in the OpenSSL crypto library

» OpenSSL contains 1874 #ifdefs with 391 different labels

» This yields 231 = 5-101!17 combinations!

» As comparison: The observable universe has only about 108° atoms.

SPLLFT applied to example SPL

true false false

Qe X® V@
control-flow edge
int x =
V\ l password() data-flow edge
Oe Xe Yo e il
V conditional data-flow edge
mt y =0 . — ,
v l 5 violating information flow
0e Xxe Ye false
| Y T
—|F I [] X = O . ,’ 1
v s’ - ‘
" __p» 0 pPe FAG
e - xe ‘l}j: ___________________ G : v
e N =7 -H , [H]p = 0;
| Y \ 4 %
-G | [G] v = foo (x) Qe pe ;
| : |
T T~ L o l return p;
\ VS / \/ fmmmmmad ==t .
Oe X® Ye & T T ee~al_ TT==_
V ~~~~~~ Oe PO —-F'A G /\ —nH
print (y) ¢
Result: _IF A A - H

SPLLIFT determines in a single pass that the password can only leak

if

is enabled but

and - are disabled.

This is consistent with the result determined by the traditional analysis.

Empirical Evaluation

» SPLLFT shows remarkable performance

» In some cases the traditional approach would have taken days or

years, while SPLUFT only takes minutes to compute.

» Hence solved a problem to which previously no scalable solution

existed

Benchmark
BerkeleyDB
GPL
Lampiro
MMO8

Performance comparison of SPLLFT with traditional approach ‘A2”.

Possible Types

SPLLIFT
24s
42s

45
3s

A2

years
9h03m39s
13s

2m06s

SPLLIFT
12m04s
3m48s
42s

59s

Reaching Definitions

A2
years
days
3m30s
24m?29s

SPLLIFT
10m18s
7mQ09s
1m25s
2m1l3s

Uninitialized Variables

A2

years
days
3m09s
27m39s

Implementation

» Based on CIDE, Soot, JavaBDD, and our IFDS implementation Heros

» Available as open source at: http://bodden.de/spllift/

http://sse.ec-spride.de/

@

SECURE

SOFTWARE ENGINEERING
GROUP

