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» Product lines allow highly customizable products as specializations of a

common platform; success stories exist in the car manufacturing and
mobile devices industries

» Software product lines (SPLs) use conditional compilation (e.g. via
#ifdef) to define many products as variations of a common code base

» Problem: traditional static analyses can only be applied to pre-
processed software products

» But even small product lines can induce thousands of products:
different combinations of features cause a combinatorial explosion

» Result: existing approaches do not scale; SPLs are currently
effectively unanalyzable

void main() {
int x = password();—
int y = 0; Nﬁa&h§‘“‘\\ |

traditional approach:
to decide whether the

#ifdef F

" 0: Feature F password may leak to the

pelit G print statement, one must
y = foo(x);

#endif analyze all

, print(y); 2553 =8

possible products
int foo(int p) {

#ifdef H ,

p = 0; Feature H product { "} indeed
#endif .

return p; contains a leak
}

Methodology

» Our approach SPLLFT jnstead analyzes the entire product line at once,
including all possible combinations

» This is achieved by combining flow functions for the case where an

ifdef is disabled with the one for the case where it is enabled

» The result is a lifted flow function

Enabled-case flow function ¥

d
o

0

o
|

v

o

0

V. oF

0 a
o o
rl
\ \
o o
0 a

b
°
v
°
b

Disabled-case flow function £

Lifted flow function

0 a

o o
I\\F
I

v 1y

o o

0 d

lifting of a flow function that generates the data-flow fact b after the
statement if a is valid before the statement
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labels of #ifdefs used
in OpenSSL

» Scale of the problem is immense: as an example, we investigated the
usage of #ifdef constructs in the OpenSSL crypto library

» OpenSSL contains 1874 #ifdefs with 391 different labels

» This yields 231 = 5-101!17 combinations!

» As comparison: The observable universe has only about 108° atoms.

SPLLFT applied to example SPL
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Result: _IF A A - H ....................................

SPLLIFT determines in a single pass that the password can only leak

if

is enabled but

and - are disabled.

This is consistent with the result determined by the traditional analysis.

Empirical Evaluation

» SPLLFT shows remarkable performance

» In some cases the traditional approach would have taken days or

years, while SPLUFT only takes minutes to compute.

» Hence solved a problem to which previously no scalable solution

existed
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Performance comparison of SPLLFT with traditional approach ‘A2”.
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Implementation

» Based on CIDE, Soot, JavaBDD, and our IFDS implementation Heros

» Available as open source at: http://bodden.de/spllift/

http://sse.ec-spride.de/
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