
SPLLIFT - Transparent and Efficient Reuse of
IFDS-based Static Program Analyses

http://sse.ec-‐spride.de/

Eric Bodden (TU Darmstadt), Claus Braband (ITU Copenhagen), Marcio Ribeiro, Tarsis Toledo, Paulo Borba (UFPE Brazil) and
Mira Mezini (TU Darmstadt)

Motivation

‣ Product lines allow highly customizable products as specializations of a
common platform; success stories exist in the car manufacturing and
mobile devices industries

‣ Software product lines (SPLs) use conditional compilation (e.g. via
#ifdef) to define many products as variations of a common code base

‣ Problem: traditional static analyses can only be applied to pre-
processed software products

‣ But even small product lines can induce thousands of products:
different combinations of features cause a combinatorial explosion

‣ Result: existing approaches do not scale; SPLs are currently
effectively unanalyzable

Empirical Evaluation

Feature'F

Feature'G

Feature'H

?

void main() {
 int x = password();
 int y = 0;
#ifdef F
 x = 0;
#elif G
 y = foo(x);
#endif
 print(y);
}

int foo(int p) {
#ifdef H
 p = 0;
#endif
 return p;
}

void main() {
 int x = password();
 int y = 0;
 y = foo(x);
 print(y);
}

int foo(int p) {
 return p;
}

{G}

void main() {
 int x = password();
 int y = 0;
 print(y);
}

int foo(int p) {
 return p;
}

void main() {
 int x = password();
 int y = 0;
 x = 0;
 print(y);
}

int foo(int p) {
 return p;
}

void main() {
 int x = password();
 int y = 0;
 print(y);
}

int foo(int p) {
 p = 0;
 return p;
}

void main() {
 int x = password();
 int y = 0;
 x = 0;
 y = foo(x);
 print(y);
}

int foo(int p) {
 return p;
}

void main() {
 int x = password();
 int y = 0;
 x = 0;
 print(y);
}

int foo(int p) {
 p = 0;
 return p;
}

void main() {
 int x = password();
 int y = 0;
 y = foo(x);
 print(y);
}

int foo(int p) {
 p = 0;
 return p;
}

void main() {
 int x = password();
 int y = 0;
 x = 0;
 y = foo(x);
 print(y);
}

int foo(int p) {
 p = 0;
 return p;
}

{F,G,H}{G,H}{F,H}{F,G}

{'} {F} {H}✓ ✓ ✓

✓ ✓ ✓

X

✓

traditional approach:
to decide whether the
password may leak to the
print statement, one must
analyze all
2|{F,G,H}|=8
possible products

product {G} indeed
contains a leak

Scale of the problem

‣ Scale of the problem is immense: as an example, we investigated the
usage of #ifdef constructs in the OpenSSL crypto library

‣ OpenSSL contains 1874 #ifdefs with 391 different labels

‣ This yields 2391 ≈ 5･10117 combinations!

‣ As comparison: The observable universe has only about 1080 atoms.

int x = secret();

int y = 0;

y = foo(x);

print(y);

return p;

•0 •x •y

•0 •x •y

•0 •x •y

•0 •x •y

•0 •p

•0 •p

normal

normal

call-to-return

call

return

control-flow edge

data-flow edge

violating information flow

Fig. 3: Exploded super graph for the single example product from Figure 1b; main method shown on left-hand side, foo shown to the right

Enabled-case flow function fF Disabled-case flow function f¬F Lifted flow function fLIFT

•0

•
0

•a

•a

•b

•
b

F
F _

•0

•
0

•a

•a

•b

•
b

¬F ¬F ¬F =

•0

•
0

•a

•a

•b

•
b

F

¬F
¬F

Fig. 4: Lifting of different flow functions in SPLLIFT

But how about intra-procedural flows through branching state-
ments? We conduct our analysis on the Jimple intermediate repre-
sentation, a three-address code, for which we need to distinguish un-
conditional branches through throw e and goto l, from conditional
branches of the form if(p)goto l.

Figure 4b shows how we lift flow functions for unconditional
branches labeled with a feature annotation F . If the throw or goto
statement is enabled, data flow only exists towards the nodes of the
branch target (the primed nodes in Figure 4b). Both edges within this
figure are assumed to be labeled with F . If the statement is disabled,
data flows only along the fall-through branch, as the branch does
not actually execute. Again we use the identity function in this case.
Just as before, the lifted flow function fLIFT is obtained through a
disjunction of both functions.

For conditional branches of the form if(p)goto l, the lifted flow
function is basically a combination of the cases for the unconditional
branch and the “normal data flow”, which models the case in which
the branch falls through. We show the respective case in Figure 4c.
The disabled case ¬F is handled just as for unconditional branches;
if a branch is disabled, it just falls through, no matter whether it is
conditional or not.

B. Inter-procedural flow functions

The call and return flow functions model inter-procedural control
flows caused by call and return statements. The general idea behind
modeling those functions is the same as in the intra-procedural case,
however this time we need to consider a different flow function for
the disabled case, i.e., when ¬F holds. Remember that a call flow
function leads from a call site to its callee, and a return flow function
from a return statement to just after the call site. Using the identity
function to model such situations would be incorrect: If we were to
use the identity function then this would propagate information from
the call site to the callee (respectively vice versa) although under
¬F the call (or return) never occurs. We must hence use the kill-
all function to model this situation, as shown in Figure 4d (middle
column). This function kills all data-flow facts, modeling that no flow
between call site and callee occurs if the invoke statement is disabled.

C. Edges between 0 nodes

It is an interesting question to ask whether we should conditionalize
edges between 0 nodes. As explained earlier, in plain IFDS/IDE,
0 nodes are always connected, unconditionally. We decided for the
design shown in Figure 4 where edges between 0 nodes are in fact
conditionalized with by feature annotations just as any other edges.

Methodology

‣ Our approach SPLLIFT instead analyzes the entire product line at once,
including all possible combinations

‣ This is achieved by combining flow functions for the case where an
ifdef is disabled with the one for the case where it is enabled

‣ The result is a lifted flow function

labels of #ifdefs used
in OpenSSL

SPLLIFT applied to example SPL

lifting of a flow function that generates the data-flow fact b after the
statement if a is valid before the statement

Result: ¬F	 ⋏	 G	 ⋏	 ¬	 H

SPLLIFT determines in a single pass that the password can only leak
if G is enabled but F and H are disabled.

This is consistent with the result determined by the traditional analysis.

int x =
password();

int y = 0;

[F] x = 0;

[G] y = foo(x);

print(y);

[H] p = 0;

return p;

•0 •x •y

•0 •x •y

•0 •x •y

•0 •x •y

•0 •x •y

•0 •p

•0 •p

•0 •p

¬F

¬G

¬H

G

G

G

G

control-flow edge

data-flow edge

conditional data-flow edge

violating information flow

true false false

false

¬F ^G

¬F ^G ^ ¬H

Fig. 5: SPLLIFT as it is applied to the entire example product line of Figure 1a; an edge labeled with feature constraint C represents the
function �x. x ^ C. Constraints at nodes represent initial values (at the top) or intermediate results of the constraint computation.

exclusive-OR group to a [. . .] pairwise mutual exclusion of
the group members.”

We use this form of translation to obtain a Boolean feature-model
constraint from the graphical feature models defined for our bench-
mark subjects.

V. IMPLEMENTATION WITH SOOT AND CIDE

We have implemented SPLLIFT based on the Soot program analysis
and transformation framework [13], the Colored Integrated Develop-
ment Environment (CIDE) [14] and the JavaBDD1 library. We have
implemented an IDE solver [10] in Soot that works directly on Soot’s
intermediate representation “Jimple”. Jimple is a three-address code
representation of Java programs that is particularly simple to analyze.
Jimple statements are never nested, and all control-flow constructs are
reduced to simple conditional and unconditional branches. Soot can
produce Jimple code from Java source code or bytecode, and compile
Jimple back into bytecode or into other intermediate representations.

To be able to actually parse software product lines, we used CIDE,
an extension of the Eclipse IDE [15]. In CIDE, software produce lines
are expressed as plain Java programs. This makes them comparatively
easy to parse: there are no explicit compiler directives such as #ifdef
that a parser would need to handle. Instead, code variations are
expressed by marking code fragments with different colors. Each
color is associated with a feature name. In result, every CIDE SPL is
also a valid Java program. CIDE forbids so-called “undisciplined”
annotations, i.e., enforces that users mark code regions that span
entire statements, members or classes. Previous research has shown
that this is typically not a practical limitation [18]. Figure 6 shows
our running example program with the appropriately marked features
in CIDE.

1JavaBDD website: http://javabdd.sourceforge.net/

Fig. 6: Example program in the Colored IDE (CIDE)

One performance critical aspect of our implementation is what data
structures we use to implement the feature constraints that SPLLIFT

tracks. After some initial experiments with a hand-written data
structure representing constraints in Disjunctive Normal Form, we
switched to an implementation based on Binary Decision Diagrams
(BDDs) [19], using JavaBDD. BDDs have the advantage that they
are relatively compact, and are normalized, which allows us to easily
detect and exploit contradictions. The size of a BDD can heavily
depend on its variable ordering. In our case, because we did not
perceive the BDD operations to be a bottleneck, we just pick one
ordering and leave the search for an optimal ordering to future work.

Current Limitations

Our current implementation is not as sensitive to feature annota-
tions as it could be. This is mostly due to the fact that IFDS/IDE
requires the presence of a call graph, and currently we compute this
call graph without taking feature annotations into account. While we
follow call-graph edges in a feature sensitive fashion (as defined by
our call flow function), the feature-insensitive call graph is also used
to compute points-to sets. This precludes us from precisely handling
situations such as the following:

Configurations Possible Types Reaching Definitions Uninitialized Variables
Benchmark valid Soot/CG SPLLIFT A2 SPLLIFT A2 SPLLIFT A2

BerkeleyDB unknown 7m33s 24s years 12m04s years 10m18s years
GPL 1,872 4m35s 42s 9h03m39s 8m48s days 7m09s days

Lampiro 4 1m52s 4s 13s 42s 3m30s 1m25s 3m09s
MM08 26 2m57s 3s 2m06s 59s 24m29s 2m13s 27m39s

TABLE II: Performance comparison of SPLLIFT over A2 ; values in gray show coarse estimates

Benchmark Feature Model Possible Types Reaching Definitions Uninitialized Variables
regarded 24s 12m04s 10m18s

BerkeleyDB ignored 23s 11m35s 10m47s
average A2 21s 9m35s 7m12s

regarded 42s 8m48s 7m09s
GPL ignored 18s 8m21s 7m29s

average A2 17s 7m31s 6m42s
regarded 4s 42s 1m25s

Lampiro ignored 4s 48s 1m13s
average A2 3s 42s 49s

regarded 3s 59s 2m13s
MM08 ignored 2s 45s 1m49s

average A2 2s 31s 1m37s

TABLE III: Performance impact of feature model on SPLLIFT. Values in gray show the average time of the A2 analysis. This number can
be seen as lower bound for any feature-aware analysis.

well for the Boolean operations we require. Finally, for the first time
we present empirical evidence of the benefits of our approach.

Brabrand et al. present a number of mechanisms to lift intra-
procedural data-flow analyses to SPLs by extending the analysis
abstraction with feature constraints [22]. Our approach, on the other
hand, lifts information and data-flow analyses to SPLs on a whole-
program level, using a different analysis framework, and in particular
requiring no extension of the analysis abstraction. In SPLLIFT, the
implementation of the IFDS flow functions can remain unchanged.
To the best of our knowledge SPLLIFT is the first work that supports
such transparent reuse of analyses.

Thum et al. survey analysis strategies for SPLs [23], focusing on
parsing [20], type checking [24], [25], model checking [26], [27],
and verification [28]–[30]. The surveyed work does not include SPL
data-flow analysis approaches, but shares with our work the general
goal of checking properties of a SPL with reduced redundancy and
efficiency. Similar to LiftSPL, a number of approaches covered by
the survey adopt a family-based analysis strategy, manipulating only
family artifacts such as code assets and feature model. Contrasting,
product-based strategies, such as the generate-and-analyze approach
we use as baseline, manipulate products and therefore might be
too expensive for product lines having a large number of products.
Product-based strategies, however, might be appealing because they
can simply reuse existing analyses, but this is also the case of the
specific family-based strategy proposed here.

In the testing context, Kim et al. use conventional inter-procedural
data-flow analysis to identify features that are reachable from a given
test case [31]. The test case is then only executed with the SPL
products that have these features, reducing the number of combina-
tions to test. They are able to use an off-the-shelf analysis because
they express part of the variability using conditional statements,
not conditional compilation or other feature tagging mechanisms.
This is similar to the technique of configuration lifting [28], which
converts compile time variability into runtime variability. In this
paper we propose an SPL aware analysis to obtain more precision
and deal with the full range of fine and coarse grained variability,
considering even conflicting alternative variability that cannot be
handled by a conventional analysis. By applying our family-based

analysis followed by their product-based testing one could maybe
further reduce the effort to test a SPL. Similar benefits might apply
for other testing approaches based on conventional analyses [32] or
even SPL aware model level analyses [33].

TODO: Marcio: Better adapt the two paragraphs below to our
context. The idea of making dataflow analysis sensitive to statements
that may or may not be executed is related to path-sensitive dataflow
analysis. Such analyses compute different analysis information along
different execution paths aiming to improve precision by disregard-
ing spurious information from infeasible paths [34] or to optimize
frequently executed paths [35]. Earlier, disabling infeasible dead
statements has been exploited to improve the precision of constant
propagation [36] by essentially running a dead-code analysis capable
of tagging statements as executable or non-executable during constant
propagation analysis.

Predicated dataflow analysis [37] introduced the idea of using
propositional logic predicates over runtime values to derive so-called
optimistic dataflow values guarded by predicates. Such analyses are
capable of producing multiple analysis versions and keeping them
distinct during analysis. However, their predicates are over dynamic
state rather than SPL feature constraints for which everything is
statically decidable.

SPLLIFT can be applied to a number of contexts, but much
motivation comes from the concept of emergent interfaces [38].
These interfaces emerge on demand to give support for specific SPL
maintenance tasks and thus help developers understand and manage
dependencies between features. Such dependencies are generated by
SPL aware analyses such as the ones discussed here. In particular,
the performance improvements we obtain with our approach are very
important to make emergent interfaces useful in practice.

VIII. CONCLUSION

We have presented SPLLIFT, an approach and framework for
transparently lifting IFDS-based static analysis to software product
lines using the more expressive framework IDE. Using a set of
experiments we were able to show that this approach can outperform
the traditional feature-oblivious generate-and-analyze approach by
several orders of magnitude. In practice, SPLLIFT thus successfully

Configurations Possible Types Reaching Definitions Uninitialized Variables
Benchmark valid Soot/CG SPLLIFT A2 SPLLIFT A2 SPLLIFT A2

BerkeleyDB unknown 7m33s 24s years 12m04s years 10m18s years
GPL 1,872 4m35s 42s 9h03m39s 8m48s days 7m09s days

Lampiro 4 1m52s 4s 13s 42s 3m30s 1m25s 3m09s
MM08 26 2m57s 3s 2m06s 59s 24m29s 2m13s 27m39s

TABLE II: Performance comparison of SPLLIFT over A2 ; values in gray show coarse estimates

Benchmark Feature Model Possible Types Reaching Definitions Uninitialized Variables
regarded 24s 12m04s 10m18s

BerkeleyDB ignored 23s 11m35s 10m47s
average A2 21s 9m35s 7m12s

regarded 42s 8m48s 7m09s
GPL ignored 18s 8m21s 7m29s

average A2 17s 7m31s 6m42s
regarded 4s 42s 1m25s

Lampiro ignored 4s 48s 1m13s
average A2 3s 42s 49s

regarded 3s 59s 2m13s
MM08 ignored 2s 45s 1m49s

average A2 2s 31s 1m37s

TABLE III: Performance impact of feature model on SPLLIFT. Values in gray show the average time of the A2 analysis. This number can
be seen as lower bound for any feature-aware analysis.

well for the Boolean operations we require. Finally, for the first time
we present empirical evidence of the benefits of our approach.

Brabrand et al. present a number of mechanisms to lift intra-
procedural data-flow analyses to SPLs by extending the analysis
abstraction with feature constraints [22]. Our approach, on the other
hand, lifts information and data-flow analyses to SPLs on a whole-
program level, using a different analysis framework, and in particular
requiring no extension of the analysis abstraction. In SPLLIFT, the
implementation of the IFDS flow functions can remain unchanged.
To the best of our knowledge SPLLIFT is the first work that supports
such transparent reuse of analyses.

Thum et al. survey analysis strategies for SPLs [23], focusing on
parsing [20], type checking [24], [25], model checking [26], [27],
and verification [28]–[30]. The surveyed work does not include SPL
data-flow analysis approaches, but shares with our work the general
goal of checking properties of a SPL with reduced redundancy and
efficiency. Similar to LiftSPL, a number of approaches covered by
the survey adopt a family-based analysis strategy, manipulating only
family artifacts such as code assets and feature model. Contrasting,
product-based strategies, such as the generate-and-analyze approach
we use as baseline, manipulate products and therefore might be
too expensive for product lines having a large number of products.
Product-based strategies, however, might be appealing because they
can simply reuse existing analyses, but this is also the case of the
specific family-based strategy proposed here.

In the testing context, Kim et al. use conventional inter-procedural
data-flow analysis to identify features that are reachable from a given
test case [31]. The test case is then only executed with the SPL
products that have these features, reducing the number of combina-
tions to test. They are able to use an off-the-shelf analysis because
they express part of the variability using conditional statements,
not conditional compilation or other feature tagging mechanisms.
This is similar to the technique of configuration lifting [28], which
converts compile time variability into runtime variability. In this
paper we propose an SPL aware analysis to obtain more precision
and deal with the full range of fine and coarse grained variability,
considering even conflicting alternative variability that cannot be
handled by a conventional analysis. By applying our family-based

analysis followed by their product-based testing one could maybe
further reduce the effort to test a SPL. Similar benefits might apply
for other testing approaches based on conventional analyses [32] or
even SPL aware model level analyses [33].

TODO: Marcio: Better adapt the two paragraphs below to our
context. The idea of making dataflow analysis sensitive to statements
that may or may not be executed is related to path-sensitive dataflow
analysis. Such analyses compute different analysis information along
different execution paths aiming to improve precision by disregard-
ing spurious information from infeasible paths [34] or to optimize
frequently executed paths [35]. Earlier, disabling infeasible dead
statements has been exploited to improve the precision of constant
propagation [36] by essentially running a dead-code analysis capable
of tagging statements as executable or non-executable during constant
propagation analysis.

Predicated dataflow analysis [37] introduced the idea of using
propositional logic predicates over runtime values to derive so-called
optimistic dataflow values guarded by predicates. Such analyses are
capable of producing multiple analysis versions and keeping them
distinct during analysis. However, their predicates are over dynamic
state rather than SPL feature constraints for which everything is
statically decidable.

SPLLIFT can be applied to a number of contexts, but much
motivation comes from the concept of emergent interfaces [38].
These interfaces emerge on demand to give support for specific SPL
maintenance tasks and thus help developers understand and manage
dependencies between features. Such dependencies are generated by
SPL aware analyses such as the ones discussed here. In particular,
the performance improvements we obtain with our approach are very
important to make emergent interfaces useful in practice.

VIII. CONCLUSION

We have presented SPLLIFT, an approach and framework for
transparently lifting IFDS-based static analysis to software product
lines using the more expressive framework IDE. Using a set of
experiments we were able to show that this approach can outperform
the traditional feature-oblivious generate-and-analyze approach by
several orders of magnitude. In practice, SPLLIFT thus successfully

Performance comparison of SPLLIFT with traditional approach “A2”.

‣ SPLLIFT shows remarkable performance

‣ In some cases the traditional approach would have taken days or
years, while SPLLIFT only takes minutes to compute.

‣ Hence solved a problem to which previously no scalable solution
existed

Implementation

‣ Based on CIDE, Soot, JavaBDD, and our IFDS implementation Heros

‣ Available as open source at: http://bodden.de/spllift/

To
appearat PLDI’13!

